Productionisation
Two services were created for this project. A RESTful front-end service that used nodeJS. We used internal Odds.com.au libraries and error handling routines to fit with their existing architecture. It primarily called the other service we created which is the internal python service that performed the machine learning predictions.
The python service used TensorFlow, Keras, Pandas and Numpy. It translated from a handful of service parameters to ~60 model parameters. This included one-hot encoding, parameter scaling & minimising and domain validation. The python service encapsulated all its data in the form of an h5 model, historical CSV results and reference data (for validation and cross referencing).
The services were configured using the Serverless framework. CI/CD included tests and data validation. The architecture enabled Odds to update historical data CSVs with the latest sports results. These were then packaged and the service was redeployed.
The use of a micro-services architecture ensures the solution can scale on demand and is fault tolerant as they are relatively self contained, have a single responsibility and are short lived.
One of the challenges we were able to overcome in this project involved identifying the c++ std library that is required by TensorFlow, building for it and packaging the replacement libraries within the python service.